The set [1,2,3,…,n]
contains a total of n! unique permutations.
By listing and labeling all of the permutations in order,
We get the following sequence (ie, for n = 3):"123"
"132"
"213"
"231"
"312"
"321"
Given n and k, return the kth permutation sequence.
Note: Given n will be between 1 and 9 inclusive.
DFS从小到大枚举排列,到K时输出。
1 class Solution { 2 private: 3 int a[10]; 4 bool canUse[10]; 5 string ret; 6 public: 7 void dfs(int dep, int maxDep, int &k) 8 { 9 if (k == 0)10 return;11 12 if (dep == maxDep)13 {14 k--;15 if (k == 0)16 {17 ret = "";18 for(int i = 0; i < maxDep; i++)19 ret += (char)(a[i] + '0');20 return;21 }22 }23 24 for(int i = 1; i <= maxDep; i++)25 if (canUse[i])26 {27 canUse[i] = false;28 a[dep] = i;29 dfs(dep + 1, maxDep, k);30 canUse[i] = true;31 }32 }33 34 string getPermutation(int n, int k) {35 // Start typing your C/C++ solution below36 // DO NOT write int main() function37 memset(canUse, true, sizeof(canUse));38 39 dfs(0, n, k);40 41 return ret;42 }43 };